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ABSTRACT

A numerical method is presented for calcu-
lating the cumulative distribution of a positive
random variable from its moment-generating function.
It involves an expansion of the rectangular function
in Laguerre functions. As examples, the cumulative
exponential and cumulative Poisson probability func-

tions are approximated.
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A common problem is the calculation of the cumulative probability

i

distribution X :
Qi) =[ ply) dy, 0< x <o, (1)
0

of a positive random variable y of which one knows only the moment-
generating function (m. g.f.),

wis) =E(¥%) =] ¢ piy)ay, @
0

 where p(?) is the probability density function (p.d.f.) of y.

In signal Idetection theory, for instance, y is related to -the likelihood
: ratio; and 1-Q(x) is the false-alarm or détection probabi.lity for a deéision
lével x. Often the m. g.f. can be worked out rafher easily, but it is
impos;ible to détermine p(y) from p (s) analytically by, for instance, taking

the inverse Laplace transform of p (-s) or the inverse Fourier transform of

I (if»)-

A technique for calculating Q(x) numerically can be derived by w‘ritin'g

(2) as o . |
Q) = [ Riy/mp Ay, (3)
0

where R(t) is the rectangular function
R(t) =1, 0<t<1;R(t)=0, t>1. - (4)
One ekpands R(t) in a series of Laguerre fur:nctions,1
Rty =e KE/2 2 a_ L_(kt), | (5)
, m m : -
. m=0 .
- where

‘a =lee-kt/2L (kt) dt =
m 0 m

k/2 R
26 /" [Lm_l(k) - Lm(k)] ~a_ e
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The series in (5) istobe truncated at a finite number M of terms.

The cumulative distribution is

Qx) =) a_C_(x), U
m=0 ‘
where the coefficients - 4
| -ky /2 | |
%yn&ey’ﬁdwmmww (8)

_ can be expressed in terms of u (-k/2x) and its deri vatives. In particular,

Cox) = w(-k/2x),

(9)
and by using the fornula.3
m
L_ () =(-)"t" /m! ) G (T) L_ (), (0
r=l '

‘a recurrence relation for Cm(x) is easily obtained,

m
m d
m

ds

C_(x) = 2™ m1) " s

" (S)]}

m _
=Y (-)F (m C , 11
s = -k/2x rz r) m-r(X) (11)

=1
which facilitates numerical computation.

The method was tried out with two very different distributions,

- the exponential,

py)=e ¥, y> 0; ply) =0, y <0, | (12)

whose m. g.f. is _
| ) ~(s-)% RLs <L, . (13)
and the Poisson, : °° 4

| ply) = e-)\z A" & (y-n) /n! L (14)

n=0 '

whose m. g.f. is | o
| w(s)=explr(e’ -1)] | (15)

First'it was necessary to determine the best value of the scale para-

. meter k when M terms are used. This was done by hunting the value of k -
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that yielded the minimum mean-square error
M-1

€=1-z a 2 : | (16)

m
m=0

in fitting the truncated version of (5) to R(t). For M =20, we found that
k =43 gives a mean-square e€rror € = 0.01567. The coefficients amv are
“listed in Table L

For the exponential p.d.f. we list in Table 2 the percentage error in
Q(x) for 0 < Q(x) < 122 and the percentage error in 1 - Q(x) for 1/2 < Q(x) < 1.
. The relative error decreases with increasing x.

For the Poisson distribution we evaluated Q(x) by the approximation
method for values of x h.alfway between the integers and compared the results
with the Poisson distribution summed from y = 0 to the greatesf: integer in x.
Table 3 lists the percentage errors in Q(x) for 0 < Q(x) < 1/2 and in 1 - Q(x)
for 1/2 < Qx)< L

The accuracy is greatest near thev mean and poorest in the tails of
the Poisson distribution, and this can be expected in most applications.
There exist other approximation methods best suited for the tails of a dis-
tribution. For large x the inverse Laplace transform of p(-s) can be
approximated by the method of steepest descents. 4 For x near 0, an
approximation to Q(x) can be obtained from the asymptotic behavior5 of
M (-s.) for large s. The method described here fills the gap.

An alternative method is the Edgeworth series, but it has an
asymptotic character that restricts its usefulness. 6 There is an optimum

number of terms in the Edgeworth series, and if more are used, the



accuracy decreases markedly. Numerical Fourier transformation of y(iw ),
followed by numerical integration of the p.d.f. p(y), might be used in some
cases, but would hardly be suitable for a discrete random variable like the

Poisson-distributed one of our second example.
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x

Error (%)

X

15
0. 071648

0.1
0.743

3.0

Error (%) -0.170

Q

Error (%)

Q

Error (%)

6
0. 00763

-59. 6

18
0.8195

0.241

TABLE 1

Coefficients of Laguerre Expansion

L

P—

~0.

-17.

4 5 6
9999 -1.9992 1.9956
10 11 2

. 4460 -0.87710 0.15695
16 17 18

.33527 -0.22910 -0.18569

TABLE 2

Exponential Distribution

.3 0.5 1.0

.561 0. 422 -0.351

.0 5.0 6.0
0878 -0.0408 -0.0174

TABLE 3

Poisson Distribution

8 10 12
.0374 0.1185 0.2676
6 -2.82 -0.133
20 22 24
.9170 0.9673 0.9888
. 135 1.199 1. 379

7 8
-1.9800  1.9261
13 14
0.41416 -0.49039
19
0.24351
1.5 2.0
-0.336 -0.285
8.0 10.0
-0.00239  -0.000224
14 16
0. 4656 0. 6641
0.00493  0.135
26 28 30
0.99669  0.99914 0.99980

-0.415 -20.2 72.2
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